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We investigate the Nash equilibria of game theoretic models of network formation
based on explicit consent in link formation. These so-called “consent models”
explicitly take account of link formation costs. We provide characterizations of
Nash equilibria of such consent models under both one-sided and two-sided costs
of link formation. We relate these equilibrium concepts to link-based stability
concepts, in particular strong link deletion proofness.
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1 Consent in network formation

Networks impact the way we behave, the information we receive, the communities we are
part of, and the opportunities we pursue; they determine the machinations of corporations,
the benevolence of non-profit organizations, and the workings of the state. Three recent
overviews of the work on large scale networks, Watts (1999), Newman (2003) and Newman,
Barabasi, and Watts (2006), show the relevance of networks for fields as diverse as physics,
social psychology, sociology, and biology. There has been a similar resurgence of interest
in economics to understand the phenomenon of network formation. A number of recent
contributions to the literature have recognized that networks play an important role in the
generation of economic gains by decision makers.
∗We are very grateful for the constructive comments of Francis Bloch and two anonymous referees on a
previous draft of this paper. We would like to thank Matt Jackson, John Conlon, Dimitrios Diamantaras
and Hans Haller for elaborate discussions on the subject of this paper. We also thank seminar participants
at LGS3, Games 2004, ESWC 2005, SING7, Virginia Tech and Louisiana State University for their
comments and suggestions. Subhadip Chakrabarti gratefully acknowledges the hospitality and financial
support provided by the Department of Economics, University of Bonn, where part of this research was
carried out.

†Queen’s University Management School, Belfast BT9 5EE, U.K. E-mail: r.gilles@qub.ac.uk.
‡Queen’s University Management School, Belfast BT9 5EE, U.K. E-mail: s.chakrabarti@qub.ac.uk.
§DIW Berlin and Department of Economics, Louisiana State University, Baton Rouge, LA 70803, U.S.A. E-
mail: sarangi@lsu.edu.

1



In this paper we study two game-theoretic models of social network formation.1 These two
models of social network formation are based on three simple and realistic principles that
govern most real-life networks: (1) Link formation should be based on a binary process of
consent; (2) Link formation is in principle costly; and (3) The payoff structure of network
formation should be as general as possible.
The process of network formation studied here is a generalization of a simple network

formation model developed by Myerson (1991, page 448). Following Myerson, we model the
link formation process as a normal form non-cooperative game. This model incorporates
the fundamental idea that networks are the result of consensual link formation between
pairs of individuals. We augment this model by taking into account the three requirements
discussed above and we call this generalization of Myerson’s model the consent model of
network formation.
In our formulation, costs depend on the strategies chosen by the individuals in the link

formation process and are incurred independently of the outcome, i.e., even if a link is not
established, the initiating individual still has to pay for the act of trying to form that link. In
other words, these reflect the cost of “reaching out” to the other individual. We consider both
two-sided and one-sided costs of link formation. In the first model, both individuals bear
an individually determined cost of link formation, while in the latter model we distinguish
between an “initiator” and a “respondent” in the link formation process with only the initiator
incurring a link formation cost. This allows us to consider a very general payoff structure
that has two components—an arbitrary benefit function and an additive link formation cost
structure.2

In the literature, the consent model often figures in discussions on network formation but
has been portrayed as problematic since it is believed to have “too many” Nash equilibria
(Jackson, 2003). However, until now there has been no attempt to provide a complete
characterization of the set of these Nash equilibria and our paper tries to address this void
in the literature. For both cost structures, we establish the link between the resulting Nash
equilibria of the consent model and stable networks founded on well-accepted link-based
stability concepts.
For two-sided link formation costs, we establish that a network is supported by a Nash

equilibrium if and only if it is strong link deletion proof, in the sense that it is robust against
the simultaneous deletion of multiple links with respect to a modified payoff function that
explicitly takes into account costs of link formation of only those links that materialize.
Next, we investigate the one-sided cost model where only the link initiating individual

incurs a cost. We again devise a modified payoff function that assigns link formation costs
to the individual with the lower cost of link formation. If link formation costs are equal, a

1Within our framework, we follow standard practice in which the individuals are represented by nodes and
their social ties with others by links between these nodes. Nodes and links form together a representation
of a social network.

2An arbitrary cost structure would require costs to be dependent on outcome. Such a payoff selection would
force us to give up the generality of our results. We believe that the chosen payoff structure based on
arbitrary benefits and additive link formation costs has the added advantage of capturing what genuinely
matters in a realistic process of link formation.
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tie-breaking rule is devised. We find that unlike the two-sided cost case, strong link deletion
proof networks with respect to this payoff function are supported by Nash equilibria, while
the converse does not hold. Also, we address alternative approaches to model one-sided link
formation costs, but none result into the desired equivalence.
Finally, we establish relationships between the two cost models under consent in link for-

mation under alternative hypotheses linking the cost structure of the two models. We use
the case of uniform network benefits and costs to establish that as one expects, two-sided
costs lead to more restrictions on network formation than one-sided link formation costs.
Furthermore, we find that for arbitrary configurations, no relationship exists between the
Nash equilibria of the two models if the initiator in the model with one-sided costs has to
bear both his costs and his partner’s costs with regard to the model with two-sided costs.
However, if the initiator has to bear only his own costs, then any Nash equilibrium under
two-sided link formation costs is also supported by a Nash equilibrium under one-sided link
formation costs. The reverse, however, does not hold.

This paper is in many respects complimentary to recent contributions by Hans Haller and
his co-authors on the Nash network model (Bala and Goyal, 2000).3 Haller and co-authors
investigated the existence of pure strategy Nash networks in light of the related computational
complexity.4 Haller et al. investigate the relationship between Nash networks introduced by
Bala and Goyal (2000) and pairwise stable networks introduced by Jackson and Wolinsky
(1996). Another feature that is common to the cited work of Haller et al. and our current
paper is the fact that we allow for the value of information generated within the network and
the costs of information to be heterogeneous.
Our paper is also closely related to Gilles and Sarangi (2010). There the authors introduce

myopic belief systems to overcome the hindrances to link formation identified in the consent
approach, resulting into so-called monadically stable networks. The focus in that paper is to
simply characterize the Nash equilibria of the consent models in terms of established notions
of stability in the literature on networks.

The rest of the paper is structured as follows. The next section introduces some notation
and terminology. In Section 3 the relation between Nash equilibria of the consent model and
link-based stability of networks under two-sided link formation cost of links is discussed. In
Section 4, we investigate one-sided link formation cost of links. In Section 5, we compare the
two models. Section 6 concludes.

2 Preliminaries

Throughout this paper we consider a given finite set of individuals N = {1, 2, . . . , n} with n > 2.
In this section, we develop an overview of various well-known concepts from non-cooperative

3Nash networks are equilibrium networks in a model of network formation where links can be formed without
any requirement for consent.

4See Haller and Sarangi (2005) and Haller, Kamphorst, and Sarangi (2007) regarding existence issues and
Baron, Durieu, Haller, and Solal (2006) and Baron, Durieu, Haller, Savani, and Solal (2008) regarding the
issues pertaining to computational complexity.
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game theory and social network theory.
A non-cooperative game on the individual set N is given as a list (Ai, πi)i∈N where for

every individual i ∈ N, Ai denotes her action set and πi : A→ R is her payoff function, where
A =

∏
i∈NAi. For every a ∈ A and i ∈ N, we use a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =∏

j6=iAj to represent the actions selected by the individuals other than i. Throughout we use
the abbreviated notation (A,π).
An action ai ∈ Ai for individual i ∈ N is called a best response to a−i ∈ A−i if for every

action bi ∈ Ai we have that πi(ai, a−i) > πi(bi, a−i). An action tuple a? ∈ A is a Nash
equilibrium of the game (A,π) if for every individual i ∈ N:

πi(a
?) > πi(bi, a

?
−i) for every action bi ∈ Ai.

Hence, a Nash equilibrium a? ∈ A satisfies the property that every individual i ∈ N selects a
best response to the actions selected by the other individuals.

2.1 Social networks

Two distinct individuals i, j ∈ N with i 6= j are said to be linked if i and j interact and this
interaction results into some socio-economic benefit to both i and j. Such relationships are
undirected in the sense that both individuals are equal parties in the relationship and neither
of them are subjected to authority from the other party. The resulting benefits can be subject
to spillover effects, thus allowing for synergies from link formation.
Formally, an (undirected) link between i and j is defined as the set ij = ji = {i, j}.5 The

collection of all potential links on N is denoted by

gN = {ij | i, j ∈ N and i 6= j} (1)

A network g is defined as a collection of links g ⊂ gN. The collection of all networks on
N is denoted by GN = {g | g ⊂ gN}. The collection GN consists of 2 12n(n−1) networks. The
network gN consisting of all links is called the complete network on N, and the network
g0 = ∅ consisting of no links is the empty network on N.
For every network g ∈ GN and every individual i ∈ N we denote i’s neighborhood in g by

Ni(g) = {j ∈ N | j 6= i and ij ∈ g} (2)

and i’s corresponding direct link set as

Li(g) = {ij | j ∈ Ni(g)} ⊂ g. (3)

The set of all potential links involving i is denoted by Li = Li(gN) = {ij | j 6= i}.

5Hence, ij is equivalent to ji, both representing the same undirected relationship between i and j. We
delineate link formation costs regarding {i, j} by distinguishing the costs cij incurred by i and the costs cji
incurred by j.
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For every pair of individuals i, j ∈ N, we denote by g+ ij the network obtained by adding
the link ij /∈ g to the existing network g, i.e., g + ij = g ∪ {ij}. Also, g − ij = g \ {ij} denotes
the network that results from deleting link ij ∈ g from the existing network. For any link set
h ⊂ g we denote g− h = g \ h and for any link set h ⊂ gN \ g we define g+ h = g ∪ h.
The payoffs from network formation to the individuals are described by a network payoff

function, ϕ : GN → RN. It assigns to every individual i a payoff ϕi(g) as a function of the
network g which include payoffs from direct links as well as spillovers from indirect connections
and links between third parties.

2.2 Network-based stability concepts

Next, we introduce different concepts of network stability from a link-based perspective.
These concepts rest on the principle that while mutual consent is required for establishing a
link, an individual is able to delete her links unilaterally.

(i) A network g ∈ GN is link deletion proof if for every individual i ∈ N and every
neighbor j ∈ Ni(g), it holds that ϕi(g− ij) 6 ϕi(g). Link deletion proofness requires
that no individual has an incentive to sever an existing link with one of his neighbors.

(ii) A network g ∈ GN is strong link deletion proof (Gilles, Chakrabarti, and Sarangi,
2006) if for every individual i ∈ N and every set of her direct links h ⊂ Li(g), it holds
that ϕi(g − h) 6 ϕi(g). Strong link deletion proofness requires that no individual
has incentives to sever links with one or more of her neighbors simultaneously.

Obviously, strong link deletion proofness implies link deletion proofness, but not the reverse.
We mention also that Jackson and Wolinsky (1996) introduced the concept of pairwise

stability, which combines link deletion proofness with the property that, if one individual has
a strictly positive gain from adding a certain link to the network, the other party would have
strong objections. (The latter property can be denoted as link addition proofness.) Pairwise
stability will not be used in the present analysis, since myopically strategic behavior only
results into link deletion proof or strong link deletion proof networks.

2.3 Myerson’s consent game

The consent game was seminally introduced in Myerson (1991, page 448) as an example to
illustrate the Nash equilibrium concept. In this simple non-cooperative game, all individuals
signal simultaneously their willingness to form links with others. Links are formed if both
individuals are agreeable to the link, reflecting the consent requirement. The payoffs are
determined fully by the formed network.
Formally, Myerson’s consent game is a non-cooperative game (Am, πm) on individual set

N with for every individual i ∈ N:

Ami = {(lij)j6=i | lij ∈ {0, 1} }. (4)
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Here, lij = 1 denotes that individual i wants to form a link with j and lij = 0 signals that
individual i does not want to form the link. Obviously, li = (li1, . . . , li,i−1, li,i+1, . . . , lin) ∈
Ami denotes a strategy of individual i. A strategy profile is as usual denoted by l = (li)i∈N.
A link ij is created under consent if both i and j want to form this link, i.e., if lij = lji = 1.

Hence, the resulting network supported by the strategy profile l ∈ Am is given by

gm(l) = {ij ∈ gN | lij · lji = 1}. (5)

The consent game is completed by the definition of a payoff function πmi : Am → R with

πmi (l) = ϕi (g
m(l)) ,

where ϕ : GN → RN is the prevailing network payoff function.
As Myerson (1991) pointed out, for any payoff structure ϕ, the empty network g0 = ∅ is

supported through a Nash equilibrium in the Myerson consent game (Am, πm).

3 Two-sided link formation costs

In this section, we consider a modification of Myerson’s consent game where the “intent to
form links” is costly in the sense that approaching another individual to form a link involves
explicit investment of time, effort and energy. However, if the other individual does not
reciprocate and the link does not materialize, the individual choosing to “reach out” still
incurs this cost.6

Such a cost structure can be represented by a vector c = (cij)j6=i ∈ RN\{i}
+ where cij > 0

is the cost that individual i incurs for sending a message to individual j. Here, we assume
that an individual always incurs a cost when communicating to another individual. This cost
includes responding to messages sent by others. Hence, individual i sending a message lij = 1
to individual j always incurs the cost cij.
The consent model with two-sided link formation costs is defined as a non-cooperative game

(Aa, πa), where individual i’s strategy set is given by Aai = Ami given by (4) and individual
i’s payoff is given by

πai (l) = ϕi(g
m(l)) −

∑
j6=i

lij · cij ≡ πmi (l) −
∑
j 6=i

lij · cij, (6)

where ϕ : GN → RN is the network payoff function representing the gross benefits from
network formation without taking into account the costs of link formation.
Our first result develops a complete characterization of the Nash equilibria in the consent

model with two-sided link formation costs. Part of this equivalence theorem was already
stated without proof in Gilles and Sarangi (2010), but is fully developed here. We introduce
a strategy profile that is non-redundant in the construction of the desired social network.

6This model of two-sided link formation costs was introduced in Gilles, Chakrabarti, and Sarangi (2006)
and developed further by Gilles and Sarangi (2010).
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Definition 3.1 A strategy profile l in (Aa, πa) is non-superfluous if for all pairs i, j, lij = 1
if and only if lji = 1.

We call a non-superfluous strategy profile that is a Nash equilibrium a non-superfluous Nash
equilibrium.

Theorem 1 Consider an arbitrary network g ⊂ gN. Then the following three statements are
equivalent:

(a) g is supported by a Nash equilibrium of the consent model of network formation with
two-sided link formation costs (Aa, πa).

(b) Network g is supported by a non-superfluous Nash equilibrium of the consent model of
network formation with two-sided link formation costs (Aa, πa).

(c) Network g is strong link deletion proof with regard to the network payoff function
ϕa : GN → RN given by

ϕai (g) = ϕi(g) −
∑

j∈Ni(g)

cij (7)

Proof.
(a) implies (c): Let l? be an arbitrary Nash equilibrium in (Aa, πa). Then denote g? =

gm(l?) = {ij ∈ gN | l?ij · l?ji = 1}. We show that g? is strong link deletion proof.
Suppose individual i deletes a certain link set hi ⊂ Li(g?). Define li ∈ Aai as lij = 1 if ij ∈
g?−hi and lij = 0 for ij /∈ g?−hi. Then by l? being a Nash equilibrium gm(li, l

?
−i) = g

?−hi

and πai (l
?) > πai (li, l

?
−i). Hence,

ϕai (g
?) = ϕi(g

?) −
∑

j∈Ni(g?)

cij = π
a
i (l

?) +
∑

k : l?ik=1,l
?
ki=0

cik

> πai (l
?) > πai (li, l

?
−i) = ϕi(g

m(li, l
?
−i)) −

∑
k6=i
lik · cik

= ϕi(g
? − hi) −

∑
k∈Ni(g?−hi)

cik = ϕai (g
? − hi).

This proves that g? is strong link deletion proof for ϕa.

(c) implies (b): Suppose that g? ⊂ gN is a strong link deletion proof network for ϕa.
We show that it is supported by a non-superfluous Nash equilibrium strategy in (Aa, πa).
Consider the unique non-superfluous strategy profile l? ∈ Aa such that gm(l?) = g?. We now
show that l? is a Nash equilibrium in (Aa, πa) and l?ij = 1 if and only if ij ∈ g?. Also,

πai (l
?) = ϕi(g

m(l?)) −
∑
k6=i
l?ik · cik = ϕi(g

?) −
∑

k∈Ni(g?)

cik = ϕai (g
?).

For some individual i consider li 6= l?i . Define hi = {ik ∈ g? | lik = 0}. Then, gm(li, l
?
−i) =

g?−hi. Since g? is strong link deletion proof with respect to ϕa, it follows that ϕai (g
?−hi) 6
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ϕai (g
?). Thus,

πai (li, l
?
−i) = ϕi(g

m(li, l
?
−i)) −

∑
k6=i
lik · cik

= ϕi(g
? − hi) −

∑
k∈Ni(g?−hi)

cik −
∑

k : lik=1,l
?
ki=0

cik

6 ϕi(g
? − hi) −

∑
k∈Ni(g?−hi)

cik

= ϕai (g
? − hi) 6 ϕ

a
i (g

?) = πai (l
?).

This proves that l? is indeed a Nash equilibrium.

Trivially (b) implies (a), which proves the assertion.

Theorem 1 provides a complete characterization of the Nash equilibria of the consent model
with two-sided link formation costs. As constructed in the proof of Theorem 1, each network
is now supported by a unique non-superfluous strategy profile.
We mention in passing that there exist superfluous Nash equilibria if costs of link formation

are zero for one of the players. We provide a simple example below.

Example 3.2 Consider a network formation situation withN = {1, 2} and ϕ1(g0) = ϕ2(g0) =
ϕ1(gN) = 0 and ϕ2(gN) = 1. Link formation costs are given by c12 = 0 and c21 = 1. Hence
for i = 1, 2, ϕai (g0) = 0 as well as ϕai (gN) = 0. Clearly, the empty network g0 is both
(strong) link deletion proof for the net payoff function ϕa and supported by the superfluous
Nash equilibrium l12 = 1; l21 = 0. Of course, g0 is also supported as a Nash equilibrium
through its non-superfluous strategy profile in (Aa, πa). �

4 One-sided link formation costs

Next we investigate the properties of equilibria in a network formation process under a one-
sided cost structure. In this approach, one of the two individuals acts as the initiator and
sends an initiation message to the other. If the other individual, called the responder , chooses
to reciprocate positively, the link materializes; otherwise, not. This link formation process
is similar to the one considered in Bala and Goyal (2000), except that in our approach the
responder has to consent to the formation of the link, while in Bala-Goyal’s model, this is
not required.
The decision making process is more complex than that under two-sided link formation

costs. Consequently, the action set is different and, for each individual i, is given by

Abi =
{
(lij, rij)j6=i

∣∣ lij, rij ∈ {0, 1}
}
. (8)

Player i chooses to act as an initiator in forming a link with j if she initiates a message to
j indicated as lij = 1. Player j responds positively to this initiative if rji = 1, and player j
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rejects the initiated link if rji = 0. Therefore, a link is only established if the initiated link is
accepted, i.e., if lij = rji = 1. This is formalized as follows.
Let Ab =

∏
i∈NA

b
i . Given the described link formation process, for any (l, r) ∈ Ab, the

resulting network is now given by

gb(l, r) = {ij ∈ gN | lij = rji = 1}. (9)

When individual i initiates a link with individual j—represented by lij = 1—she incurs a cost
of γij > 0, regardless of whether the initialized link is accepted by j or not. Responding to
a link initialization message on the other hand is costless. This results in the following net
payoff function for individual i:

πbi (l, r) = ϕi(g
b(l, r)) −

∑
j6=i

lij · γij. (10)

We refer to the game (Ab, πb) as the consent model of network formation with one-sided link
formation costs. We can construct a non-superfluous strategy profile as follows:

Definition 4.1 A strategy profile (l, r) of (Ab, πb) is non-superfluous if for all pairs i, j ∈ N
it holds that

lij = 1 implies that rji = 1 as well as lji = rij = 0, and (11)

rij = 1 implies that lji = 1 as well as lij = rji = 0. (12)

Unlike for the model under two-sided link formation costs, each network is no longer supported
by an unique non-superfluous strategy profile. But under a non-superfluous strategy profile,
only one individual bears the establishment cost of each existing link, and every initialization
is responded to positively. Next, we consider the relationship between the Nash equilibria
of the two-sided and the one-sided model and characterization of the Nash equilibria of the
one-sided model in terms of stability properties.

We first address whether there is a network payoff function which would provide equivalence
between Nash equilibria of the one-sided model and stability with regard to a payoff function
in a similar vein as Theorem 1 for two-sided link formation costs. In particular, we construct
a payoff function which only assigns link formation costs to the individual with the lower cost
of link formation. If link formation costs are equal, a tie-breaking rule is applied.
Let Ωi(g) = {j ∈ Ni(g) | γij < γji or γij = γji, i < j} ⊂ Ni(g). Now the payoff function ϕb

is defined for i ∈ N by

ϕbi (g) = ϕi(g) −
∑

j∈Ωi(g)

γij

given any network payoff function ϕ representing benefits without taking into account costs
of link formation. We can show the following implication.
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Theorem 2 If a network g? ⊂ gN is strong link deletion proof for the net payoff function
ϕb, then it is supported by a non-superfluous Nash equilibrium of the consent model with
one-sided link formation costs.

Proof. Let g? be strong link deletion proof under the net payoff function ϕb. For g?, define
a non-superfluous strategy tuple λ? = (l?, r?) as follows: l?ij = r?ji = 1 if ij ∈ g and γij < γji
or γij = γji, i < j; and l?ij = r

?
ji = 0 otherwise. Obviously, gb(l?, r?) = g? and

πbi (λ
?) = ϕi(g

b(λ?)) −
∑
j6=i
l?ij · γij = ϕi(g?) −

∑
j∈Ωi(g?)

γij = ϕ
b
i (g

?).

Now, for individual i consider an arbitrary deviation λ̂i = (̂li, r̂i) 6= (l?i , r
?
i ) = λ?i . In any

such deviation, no new links will be formed because if ij /∈ g?, it follows that l?ji = r?ji = 0.
However, links in i’s neighborhood link set can be deleted. Hence let gb(̂λi, λ?−i) = g? − hi

where hi ⊂ Li(g?).
We now prove that j ∈ Ni(g?−hi) and

[
γij < γji or γij = γji, i < j

]
implies that l̂ij = 1. In

other words, j ∈ Ωi(g? − hi) ⊂ Ni(g? − hi) implies that l̂ij = 1.
To obtain a contradiction, let j ∈ Ωi(g? − hi) but l̂ij = 0. Now,

j ∈ Ni(g? − hi)⇔ l̂ij = 1 and r?ji = 1 or r̂ij = 1 and l?ji = 1. (13)

But l?ji = 1 implies by construction γij >γji or γij = γji, i > j and r?ji = 1 implies by
construction that γij < γji or γij = γji, i < j. Since l̂ij = 0, by (13), it follows that r̂ij = l?ji = 1
which implies that γij > γji or γij = γji with i > j. This contradicts j ∈ Ωi(g? − hi)

completing the proof of the claim stated above.
Now, the proven claim implies

∑
j∈Ωi(g?−hi)

γij 6
∑

j∈Ni(g?−hi)̂

lij · γij 6
∑
j6=i
l̂ij · γij. (14)

Hence,

πbi (̂λi, λ
?
−i) = ϕi(g

b(̂λi, λ
?
−i) −

∑
j6=i
l̂ij · γij = ϕi(g? − hi) −

∑
j6=i
l̂ij · γij

6 ϕi(g
? − hi) −

∑
j∈Ωi(g?−hi)

γij = ϕ
b
i (g

? − hi)

6 ϕbi (g
?) = πbi (l

?, r?).

The first inequality follows from (14) and the second follows from the fact that g? is strong
link deletion proof with respect to ϕb.

The converse of Theorem 2 does not hold as shown by the following counter-example.

Example 4.2 Consider a network formation situation withN = {1, 2} and ϕ1(g0) = ϕ2(g0) =
0, ϕ1(gN) = 2 and ϕ2(gN) = 10. Link formation costs are given by γ12 = 5 and γ21 = 7.
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Hence for i = 1, 2, ϕbi (g0) = 0 and ϕb1 (gN) = −3 and ϕb2 (gN) = 10. Clearly, the complete
network is not (strong) link deletion proof for the net payoff function ϕb. But there is a Nash
equilibrium of the one-sided model that supports it: l12 = 0; r12 = 1; l21 = 1; r21 = 0. �

The problem of finding a reasonable payoff function that can completely characterize Nash
equilibria of the one-sided model in terms of stability remains open. One might expect that
a network payoff function that assigns a link initiator role to the individual with the higher
marginal net benefits as a result of formation of the link in question might resolve the issue.
Below it is shown that this is not true. In fact, we conjecture that no such payoff function
exists.

Example 4.3 Consider a situation with three players, 1, 2 and 3. The following table gives
the benefits for each of the three individuals in the case of the formation of one of three
relevant networks:

Network g ϕ1(g) ϕ2(g) ϕ3(g)

{12} 10 10 0
{13} 10 0 10

{12, 13} 15 20 20

All other networks generate no benefits to any of the three individuals, i.e., ϕi(g) = 0 for all
other networks g not listed in the table.
Consider the following link formation costs: γ12 = γ13 = 9, γ21 = 10, γ31 = 10, and
γ23 = γ32 = 10. Within this context, individual 1 has the highest marginal net benefit from
forming links 12 as well as 13, namely ϕ1({12}) − γ12 = ϕ1({13}) − γ13 = 1, while the other
players have no net benefits from forming links 12 and 13.
Now, the network {12, 13}is not link deletion proof if the individual with the highest net
marginal benefit is assumed to finance the formation of a link. Indeed, individual 1—who
has the highest net marginal benefits from both links—has a negative net benefit from {12, 13}

and would prefer to sever one of the two links to increase her net benefit to 1.
On the other hand, {12, 13} is supported by a non-superfluous Nash equilibrium strategy
profile under one-sided link formation costs with l21 = r12 = 1 and l31 = r13 = 1. �

Next we examine whether certain other refinements can resolve the coordination and free
riding issues and restore equivalence between Nash equilibria of the model with one-sided
costs and strong link deletion proofness with respect to some well-constructed network payoff
function.
Often sequential decision making solves a coordination problem. With this in mind, con-

sider the following two-stage game: In the first stage, every individuals i ∈ N initiates links
by determining (lij)j6=i. In the second stage, all individuals respond to links initiated in the
first stage and select (rij)j6=i. The question is whether the subgame perfect Nash equilibria
of this game are strong link deletion proof with regard to ϕb. We show that this is not
necessarily the case.
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Example 4.4 Reconsider Example 4.2. We showed earlier that the complete network is not
(strong) link deletion proof for the net payoff function ϕb but there is a Nash equilibrium
of the one-sided model that supports it, namely, l12 = 0; r12 = 1; l21 = 1; r21 = 0. We now
show that in the new game, this is subgame perfect as well. Consider the reduced game in
the second stage, given that l12 = 0 and l21 = 1 has been chosen in the first stage. In normal
form it can now be represented as

r21

r12
0 1

0 0,−7 0,−7

1 2, 3 2, 3

There are two Nash equilibria in this game, one of which is r12 = 1 and r21 = 0. It is easy to
check that the given strategy tuple is indeed a subgame perfect equilibrium in this game. �

The reason why sequential decision making cannot resolve the coordination problem is that
here the problem stems from costs not being transferable. Complete transferability of costs
and benefits would take us into the framework of Jackson and Wolinsky (1996) and Bloch
and Jackson (2007).

5 A comparison of the two cost models

In this section we compare the two cost models of network formation that we have intro-
duced in the previous sections. We first develop an elaborate application that illustrates the
differences that emerge in under the two cost models of link formation. Second, we provide a
formal comparison of the Nash equilibria under two-sided and one-sided link formation costs.

5.1 Uniform network benefits

Consider a scenario where the gross benefit function ϕi : GN → R is uniform across all the
individuals in any component7 and fully described by ϕi(g) = ω(k), where ω : N → R+ is
a strictly increasing and strictly concave function in the size k of the component of which
individual i is a member. A well-known example of a gross benefit function that satisfies these
requirements is the payoff function stemming from trade networks originally due to Jackson
and Watts (2002, page 274) and subsequently elaborated upon in Jackson and van den
Nouweland (2005, page 428). We further assume that all link formation costs are uniform
across all individuals, given by c > 0 for the two-sided model and γ > 0 for the one-sided
model.
We first investigate the two-sided link formation cost model. Since benefits are uniform

across individuals, the stability of the network depends on the individual who has the least
net payoff stemming from maintaining a certain link, denoted as the consequential individual.

7We recall that two individuals are connected if there exists a path between these two individuals in the
prevailing network. Now, a component in a given network is a maximally connected group of individuals.

12



For two-sided link formation costs, this is exactly the individual who has the least to lose in
terms of gross benefits by deleting a certain link. For a star network, this individual is given
by the center of the star.
Define the function ρ as the marginal benefit function given by

ρ(k) = ω(k) −ω(k− 1). (15)

Given that ω is strictly concave, ρ is strictly decreasing.
The consequential individual is interested in maintaining a link, if ρ(k) > c. In other

words, the largest star component in a network that can be supported by a Nash equilibrium
of the consent model with two-sided link formation costs is given by k̃ with ρ(k̃) > c and
ρ(k̃+ 1) < c.
For the one-sided link formation cost model, the consequential individual is no longer that

individual who has the least to lose by deleting a link—because that individual can act
as the responder rather than the initiator—but the individual in the neighborhood of this
individual, who has the least to lose by deleting the link with the least net benefit individual
is the consequential individual. Consequently, the largest star network that can be supported
under one-sided link formation costs is equal to n if γ 6 ω(n) and zero otherwise.
Assuming that the two cost parameters c and γ are not too different from each other, we

emphasize the contrasting effects on the star network architectures as we move from two-
sided to one sided link formation costs. It is not surprising that larger (connected) networks
can be supported under one-sided link formation costs, but the extremely large increase of
the supported size from k̃ to n is rather surprising.

5.2 A formal relationship between the two consent models

Since the models have different philosophical bases, we must make some simplifying assump-
tions to enable a more formal comparison.

Case A: Suppose that the initiator in the model with one-sided costs bears both his cost
and the cost of the responder in context of the two sided model. So, initiation is tantamount
to bearing the total cost of link formation, i.e., γij = cij + cji for all i 6= j. Benefits remain
individualized and are not transferable.
In this case, it is quite obvious that the Nash equilibria of the two models are not compa-

rable:

Example 5.1 Let N = {1, 2} and ϕi(gN) = 51, ϕi(g0) = 0, i = 1, 2 and c12 = c21 = 50.
Then, gN is supported by a Nash equilibria of the two sided model, namely l12 = l21 = 1.
But there is no Nash equilibrium in the one-sided model that would support it because no
one would be willing to sustain a cost of 100 in order to sustain this network.
Next, let ϕ1(gN) = 12, ϕ2(gN) = 2, ϕi(g0) = 0, i = 1, 2 and c12 = c21 = 5. Then, gN is
supported by a Nash equilibria of the one sided model, namely l12 = r21 = 1, l21 = r12 = 0.
The strategy supporting this network in the two-sided model is not a Nash equilibrium. �
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Case B: Next, we consider the case in which the link formation costs are not transferable
and that the initiator has to bear only his own cost.8 Namely, γij = cij for all i 6= j. In this
case, it can be shown that networks supported by Nash equilibria of the two two-sided model
are also supported by some Nash equilibrium of the one-sided model, while the converse does
not hold.

Theorem 3 If a network is supported by a Nash equilibrium of the consent model with two-
sided link formation costs, then there exists a non-superfluous Nash equilibrium in the consent
model with one-sided link formation costs supporting this network.

In order to prove Theorem 3 we require a preliminary result.

Lemma 5.2 Consider the network g supported by a non-superfluous strategy profile (l, r).

Consider a deviation by an individual i to (̃li, r̃i) 6= (li, ri) yielding a network g̃. Then g̃ ⊂ g.

Proof. The only fact that needs to be shown is that if ij /∈ g, j 6= i, it does not belong to g̃
either. Now, ij /∈ g ⇔ lij = rji = lji = rij = 0 by definition. But lji = rji = 0 implies ij /∈ g̃.
This proves the claim.

Proof of Theorem 3. Let g? be supported by a Nash equilibrium l? ∈ Aa of the consent
model with two-sided link formation costs (Aa, πa). We now construct a non-superfluous
strategy tuple (̂l, r̂) ∈ Ab in the consent model with one-sided link formation costs such that
gb(̂l, r̂) = g? and (̂l, r̂) is a Nash equilibrium in (Ab, πb).
From Theorem 1, we can assume without loss of generality that l? ∈ Aa is non-superfluous.
Given l?, we define λ̂ = (̂l, r̂) ∈ Ab by

(a) l̂ij = r̂ji = 1 and l̂ji = r̂ij = 0 if and only if l?ij = l?ji = 1, and either cij < cji, or
cij = cji and i < j.

(b) l̂ij = r̂ji = 0 and l̂ji = r̂ij = 1 if and only if l?ij = l?ji = 1, and either cij > cji, or
cij = cji and i > j.

(c) l̂ij = l̂ji = r̂ij = r̂ji = 0 if and only if l?ij = l
?
ji = 0.

It follows immediately that (̂l, r̂) is a non-superfluous strategy profile supporting gb(̂l, r̂) = g?.
It remains to be shown that (̂l, r̂) is a Nash equilibrium of the consent model with one sided
link formation costs.
Let an arbitrary individual i select strategies (̃li, r̃i) ∈ Abi . Note that λ̂i = (̂li, r̂i) and define
λ = (̃λi, λ̂−i), which is the resulting strategy tuple following deviation by i.
Now let Λi1(λ) = {j ∈ N | l̃ij = 0, r̃ij = 1, l̂ji = 1} and Λi0(λ) = {j ∈ N | l̃ij = 1, r̂ji = 0,

min(̂lji, r̃ij) = 0}. We know from Lemma 5.2 that gb(λ) ⊂ g?. Hence, given that l? is a Nash
equilibrium and, therefore, by Theorem 1, g? is strong link deletion proof with respect to ϕa,
implying that

ϕai (g
b(λ)) 6 ϕai (g

?) (16)
8One can think of a scenario where the costs of one party are sunk and thus not relevant to decision making.
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Now,

πbi (λ) = ϕi(g
b(λ)) −

∑
ij∈gb(λ)

cij +
∑

j∈Λi1(λ)

cij −
∑

j∈Λi0(λ)

cij.

We assign to individual i the costs of all the links in gb(λ) and then deduct those costs
for which i acts as the receptor in the new strategy profile λ and hence are not borne by
individual i. Hence,

πbi (λ) 6 ϕi(g
b(λ)) −

∑
ij∈gb(λ)

cij +
∑

j∈Λi1(λ)

cij

= ϕai (g
b(λ)) +

∑
j6=i
cij · r̃ij · r̂ij ·

(
1− l̃ij

)
(17)

6 ϕai (g
?) +

∑
j6=i
cij · r̃ij · r̂ij ·

(
1− l̃ij

)
(18)

= ϕi(g
?) −

∑
ij∈g?

cij +
∑
j6=i
cij · r̃ij · r̂ij ·

(
1− l̃ij

)
6 ϕi(g

?) −
∑
ij∈g?

cij +
∑
j6=i
cij · r̃ij · r̂ij (19)

= ϕi(g
?) −

∑
j6=i
l̂ij · cij −

∑
j 6=i
r̂ij · cij +

∑
j6=i
r̃ij · r̂ij · cij

= πbi (̂l, r̂) −

∑
j6=i
r̂ij · cij −

∑
j 6=i
r̃ij · r̂ij · cij

 6 πbi (̂l, r̂). (20)

To show the derivation above, we consider the various inequalities:
Equality (17) holds because j ∈ Λi1(λ) implies l̃ij = 0, r̃ij = 1, l̂ji = 1. This implies (1−l̃ij) = 1
and r̃ij = 1. Furthermore, by definition l̂ji = 1 implies r̂ij = 1. If j /∈ Λi1(λ), either l̃ij = 1 or
r̃ij = 0 or l̂ji = 0. Either of these reduce the expression to zero noting the fact that l̂ji = 0

implies r̂ij = 0.
The second inequality (18) follows from (16). The third inequality (19) is again obvious given
(1− l̃ij) 6 1. The fourth inequality (20) follows from the fact that r̃ij 6 1.
This completes the proof of the assertion.

We show that the converse of Theorem 3 does not hold.

Example 5.3 Consider a situation with two individuals, N = {1, 2} with ϕ1(g0) = ϕ2(g0) =
0, ϕ1(gN) = 6 and ϕ2(gN) = 4. Let costs of link formation be 5 for each individual. The
complete network initiated by individual 1 is supported by a Nash equilibrium in the one-
sided model. But the strategy profile in the two-sided model that supports this network is
not a Nash equilibrium. �
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6 Concluding remarks

In this paper we have investigated network formation under mutual consent and costly com-
munication. We developed two modifications of Myerson’s seminal model of network forma-
tion under mutual consent that reflect such link formation cost considerations.
We believe that the two approaches to bearing link formation costs under consent opens

the way to investigate link formation processes in more precise detail. This requires the
introduction of a dynamic approach to the link formation process, as already explored for a
two-stage process of initiation and response in Example 4.3. This example makes clear that a
deeper understanding is required that takes us to more advanced models such as captured by
farsightedness in network formation (Page, Wooders, and Kamat, 2002; Dutta, Ghosal, and
Ray, 2005; Page, Wooders, and Kamat, 2005; Herings, Mauleon, and Vannetelbosch, 2009).
It should be expected that in such dynamic approaches complete equivalence results will be
hard to establish and more direct methodologies are called for.
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